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LETTER TO THE EDITOR 

Metal-insulator transition in the four-dimensional 
Anderson model 
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t Institute of Phvsics. Slovak Academy of Sciences. D~bravask.4 cesta 9. 842 28 Bratislava . .  
Slovakia 
t FTB Braunschweig, Bundesallee 100, D-38116 Braunschweig, Germany 

Received 22 September 1994 

Abstract The metal-insulator transition in the four-dimensional Anderson model is sNdied 
numerically using the finite-size-scaling method. Critical disorder is found and the s p e c m  
of Lyapunov exponents of the transfer matrix is shown to change from linear to the third-root 
shape when the system undergoes the metal-insulator transition. On lhe basis of our results, we 
conjecture the dimension dependence of the critical disorder and of the spectrum of Lyapunov 
exponents for dimension d > 2. 

In this letter we present results of numerical simulations of the disorder-induced metal- 
insulator transition (MIT) in the four-dimensional (4D) Anderson model (AM). We find the 
values of the critical disorder and describe the spectrum of Lyapunov exponents (LE) of the 
corresponding transfer matrix in the neighbourhood of the critical point. 

Besides the description of the MIT in 4D systems, there are two other motivations of 
the present work. (i) It would be interesting to find the connection between the analytical 
[I, 21 and numerical 13, 4, 51 analysis of the MIT. While the first treatment works only 
slightly above the critical dimension d = 2, numerical studies could be performed only 
for the smallest integer dimension (d = 3) for which the system exhibits MIT. Combining 
these results with the present work, we can conjecture the dimension dependence of the 
critical disorder for d z 2. (ii) The knowledge of the spectrum of LE is important for the 
studies of the statistics of LE and, consequently, of the conductance [6]. Previous numerical 
studies of 3D samples [7] showed that the spectrum of LE changes its form from a linear 
to a square-root one when the disorder W crosses the critical value W,. The present work 
enables us to generalize this result for the d-dimensional system (d > 2). 

We studied the Anderson model defined by Hamiltonian 

where i ,  j are the sites of the lattice. Only the nearest-neighbour [NN] sites enter the second 
sum. Random energies E have been distributed with box distribution: 1st < f .  W measures 
the strength of the disorder. Analogously to the 3D case, we assume that the system is in 
the metallic regime for small W .  When disorder reaches its critical value, W,, the system 
exhibits MIT. For W > W, all states are localized. 

The critical disorder W, has been found by standard methods developed for studies of 
the 2D and 3D systems 18, 3, 5 ,  IO]. We consider the quasi-one-dmensional system 
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where L’ is the three-dimensional ‘cross-section’ of the system. We calculate numerically 
the eigenvalues Ai = exp(Zy,L,) of the matrix flT, where T is the transfer matrix 

and Hn is the Hamiltonian of the nth three-dimensional ‘slice’, perpendicular to the z 
direction. Periodical boundary conditions have been chosen in all directions perpendicular 
to z .  The length L, has been chosen to be long enough to assure the convergence of all 
positive LE yi to their mean values with accuracy 1%. 

It was supposed [SI that the MIT could be described in terms of only the first (the 
smallest positive) LE VI. For increasing L, the quantity 

1 
A ( L ,  W) = - 

YI L 
(4) 

decreases (increases) for W > W, (W < W,) [SI. The critical disorder W, can be found 
from the condition 

MacKinnon and Kramer [3] introduced the idea that A can he expressed as a function of 
only one variable: A(L.  W) = f(L[<), where t = t(W) is the scaling parameter. In the 
insulating regime, ((W) represents the localization length of the d-dimensional model, while e-‘ determines the conductance of the d-dimensional cube for W W,. Consequently, the 
knowledge of the disorder dependence 6 = t(W) in the neighbourhood of the critical point 
enables us to find the critical indices: ( a (W, - W)-s for W e W,, a (W - Wc)-” for 
w > w,. 

We calculated y~ for different L and disorder W in the neighbourhood of W,. Owing to 
the high dimension of our problem, the size of the transfer matrix (ZL’ x ZL’) grows rapidly 
as L increases. Therefore we had to restrict ourselves only to the system size 4 Q L Q 8. 
Obtained data enabled us to find the critical disorder W, and to construct the scaling function 
f. However, they were unsatisfactory for determination of the critical exponents. 

Figure 1 presents the L-dependence of A and proves the existence of universal scaling 
function f. From the data we found the critical disorder 

W, = 33.2& 0~.4 (6) 

Ac = 0.40 f 0.3. (7) 
Using the data for 3D systems [4, 51: W, = 16.5, A, = 0.58, we conjecture the following 
dimension dependences: 

and the critical value A, of the parameter A 

W,(d) = W,(d = 3)(d - 2) 

A, = Ac(d = 3)(d - 2)-’“. 

To check relations (8) and (9) we also collect data for systems with Gaussian disorder. 
To save computer time, the required accuracy of y~ was only 3%. When using the most 
recent numerical value of W, in  three dimensions: W,(d = 3) = 21.2 [12], relation (8) 
predicts W,(d = 4) = 42.4. On the basis of the numerical data we obtained W, FT 44.751.1. 
When taking into account the lower accuracy of the numerical data together with the small 
system size ( L  < 8). the agreement of the two values is satisfactoIy. For parameter A, 
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Figure 1. (a) A as a function of the disorder W for different L. (b) h as a function of L for 
different disorder (c) scaling function. 
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we obtained hc x 0.38 f 0.3. It is, within the numerical accuracy, in agreement with (7), 
confirming the universality of the MIT in 4D. 

For description of the spectrum of LE, it is convenient to use variables zi 
zi = 2YjL. (10) 

Comparing with (4) we have 21 = 2/A. There are N = L3 positive Lyapunov exponents. 
However, only a small fraction of them is important for our studies. Indeed, the change 
of the spectrum arises only at the beginning of the spectrum. For i >> 1, zi remains 
proporfional to index i in all three regimes. Nevertheless, these LE are very large. We 
conclude that the corresponding channels do not play any role in the MIT [ 111. 
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Figure 2 The s p ”  of LE ~i = ZyiL. (a) metal 
(W = IO. L = S), @) critical point (W = 33, L = 8.9)  ’ (c) insulator (W = 60, L = 6.8). Lines are the 
corresponding linear fits. 

The spectrum of LE for all three regimes is presented in figure 2. In the metallic regime, 
W c W,, the linear dependence zj = constant x i has been found (figure 2(a)). It agrees 
with the commonly accepted picture of the metallic regime, as first suggested by Irmy [9]. 
At the critical point, however, the spectrum changes to the form 

Z, = ZI(& + b)”3. (11) 
A numerical fit through the first 20 LE and for W = 33, L = 8 gives Q x 1.93, b = -1.06, 
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It is worth mentioning that spectrum (1 1) could be defined by using only the parameter 
z1: 

zi = zI [ 1 + jzl(i - 1)p3 
(figure 2(b)). Analogously, in the insulating regime we have 

(figure 2(c)). Formulae (12) and (13) emphasize the role of the first LE: it determines the 
form of the spectrum not only in the metallic limit, but also at and above the critical point. 

Comparing relation (12) with the square-mot behaviour in the 3D case 171, we suggest 
that the general form of the spectlum at the critical point reads 

where the d dependence of zl is given by (9). This conjecture has been used in [ll], where 
the general form of the probability distribution of LE of a d-dimensional system has been 
proposed. 

In conclusion, we have presented numerical results of studies of the metal-insulator 
transition in the four-dimensional Anderson model. Using the finite-size-scaling hypothesis, 
we found for the first time the critical disorder of the MIT and gave arguments supporting the 
idea of the universality of the transition. Obtained data together with the previously known 
results for lower dimensions enabled us to propose the simple dimension dependence of the 
parameters of the transition and of the spechum of Lyapunov exponents. In spite of the fact 
that the calculations have been resG+cted to the width L < 8 of the quasi-one-dimensional 
strips, we believe that our result provides a good starting point for analysis of the role of 
the dimension in the theory of the metal-insulator transition. 

This work was supported by Slovak Grant Agency, grant No 2/999142/93. 
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